A Titan IV rocket has put your spacecraft in circular orbit around Earth at an altitude of 290 km. What is your orbital velocity? Give your answer in m/s. NOTE: Please answer this question in a standard notation, 2 digits after the decimal point without rounding or including any units. Your trip to Mars is accomplished by using an elliptic transfer orbit going from Earth to Mars as shown in Fig. 1. This trajectory assumes that Earth at departure, the Sun, and Mars at arrival, are aligned. Also, we will assume that Earth’s and Mars’ orbits are circular, with radiuses R = 147492000 km and 228865000 km, respectively. What is, in meters, the semi-major axis, a, of this transfer orbit? Hint: determine its radiuses at aphelion and perihelion. NOTE:  Please answer this question in an integer format without rounding or including any units. PLEASE SAVE THIS ANSWER. Recall that your trip to Mars is accomplished by using an elliptic transfer orbit going from Earth to Mars as shown in Fig. 1. This trajectory assumes that Earth at departure, the Sun, and Mars at arrival, are aligned. Also, we will assume that Earth’s and Mars’ orbits are circular, with radiuses R = 147492000 km and 228865000 km, respectively. What is the eccentricity, e , of the orbit? NOTE:  Please answer this question in a standard notation, 4 digits after the decimal point without rounding or including any units. Around midcourse, a velocity adjustment is performed to eliminate the small errors introduced when departing from Earth orbit. This adjustment is performed using one of the onboard thrusters. At the location where the adjustment is made, the velocity is V = 26,237 m/s and should be V = 27,098 m/s. Knowing that the thruster used for the maneuver generates a thrust F = 7,730 N, determine how long, in minutes, it should be turned on to adjust the velocity. The mass of the spacecraft is 2,500 kg NOTE:  Please answer this question in a standard notation, 2 digits after the decimal point without rounding or including any units. Recall that your trip to Mars is accomplished by using an elliptic transfer orbit going from Earth to Mars as shown in Fig. 1. This trajectory assumes that Earth at departure, the Sun, and Mars at arrival, are aligned. You calculated that the semi-major axis for this transfer orbit in Q.2. Please refer that value. How long, in days, would the interplanetary trip last? Hint: first, determine the period of the transfer orbit. NOTE:  Please answer this question in a standard notation, 2 digits after the decimal point without rounding or including any units. Recall that your trip to Mars is accomplished by using an elliptic transfer orbit going from Earth to Mars as shown in Fig. 1. This trajectory assumes that Earth at departure, the Sun, and Mars at arrival, are aligned. You calculated the semi-major axis and the eccentricity for this transfer orbit in Q.2 and Q.3 respectively (a, e values). What is the spacecraft interplanetary velocity (in km/s) with respect to the Sun when arriving near Mars. NOTE:  Please answer this question in a standard notation, 2 digits after the decimal point without rounding or including any units. Like for the Mars Pathfinder mission, the entry and landing on Mars use a combination of aerodynamic drag (during entry, the spacecraft is protected by a heat shield), rockets, parachutes, and inflated airbags. The last phase of the entry & landing sequence is controlled by the on-board computer system. When the altitude reaches a certain critical value, the spacecraft velocity is V = 40 m/s. At this altitude, the airbags are inflated and a solid rocket engine is turned on to slow down the spacecraft prior to impact on the Martian soil. Knowing that the thrust generated by the rocket engine is 5,055 N and that the propellant burns for 10 s before impact, what will be the velocity at impact (in m/s). Assume that the spacecraft drag (due to parachute inflated airbags) is constant and is 7500 N, and that the space…

Looking for a solution written from scratch with No plagiarism and No AI?

WHY CHOOSE US?

We deliver quality original papers

Our experts write quality original papers using academic databases.We dont use AI in our work. We refund your money if AI is detected  

Free revisions

We offer our clients multiple free revisions just to ensure you get what you want.

Discounted prices

All our prices are discounted which makes it affordable to you. Use code FIRST15 to get your discount

100% originality

We deliver papers that are written from scratch to deliver 100% originality. Our papers are free from plagiarism and NO similarity.We have ZERO TOLERANCE TO USE OF AI

On-time delivery

We will deliver your paper on time even on short notice or  short deadline, overnight essay or even an urgent essay